12 騒音•振動特論

試 験 時 間 13:25~14:55 退出可能時間 13:50~14:45

答案用紙記入上の注意事項

この試験はコンピューターで採点しますので、答案用紙に記入する際には、記入方 法を間違えないように特に注意してください。以下に答案用紙記入上の注意事項を記 しますから、よく読んでください。

(1) 答案用紙には**氏名**, 受験番号を記入することになりますが, 受験番号はそのままコンピューターで読み取りますので, 受験番号の各桁の下の欄に示す該当数字をマークしてください。

(2) 記入例

受験番号 1200102479

氏 名 日本太郎

このような場合には、次のように記入してください。

氏	名		日本太郎							
	受		黟	È	i	番				
1	2 0		0	1	0 2		4	7	9	
\leftrightarrow	(1)	(1)	(1)		(1)	(1)	(1)	(1)	(1)	
(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	
(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	
(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	
(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	
(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)	
(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)	
(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	
(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)		
(0)	(0)	₩	\longleftrightarrow	(0)	€	(0)	(0)	(0)	(0)	

- (3) 試験は、多肢選択方式の五者択一式で、**解答は、1問につき1個だけ選んでください**。したがって、1問につき2個以上選択した場合には、その問いについては零点になります。
- (4) 答案の採点は、コンピューターを利用して行いますから、解答の作成に当たっては、次の点に注意してください。
 - ① 解答は、次の例にならって、答案用紙の所定の欄に記入してください。 (記入例)

問 次のうち、日本の首都はどれか。

(1) 京都 (2) 名古屋 (3) 大阪 (4) 東京 (5) 福岡 答案用紙には、下記のように正解と思う欄の枠内をHB又はBの鉛筆でマークしてください。

(1) (2) (3) \longleftrightarrow (5)

- ② マークする場合, []の枠いっぱいに, はみ出さないように (一)のようにして ください。
- ③ 記入を訂正する場合には「良質の消しゴム」でよく消してください。
- ④ 答案用紙は、折り曲げたり汚したりしないでください。

以上の記入方法の指示に従わない場合には採点されませんので、特に注意してください。

この試験では**,対数**を一部使用しています。 対**数表は 18 ~ 20 ページ**にあります。 問1 送風機の騒音とその防止に関する記述として、誤っているものはどれか。

- (1) 翼の回転により発生する空気伝搬音がある。
- (2) 送風機の機械的振動が床などに伝搬し、その振動によって発生する一次固体音がある。
- (3) ケーシング内の音波が、ケーシングやダクト壁を振動させて発生する二次固体音がある。
- (4) 一次固体音の発生は振動が原因であるから、送風機をボルトで床へしっかり と固定することが有効な防止になる。
- (5) 二次固体音の防止には、防音ラギングなどの遮音が有効である。

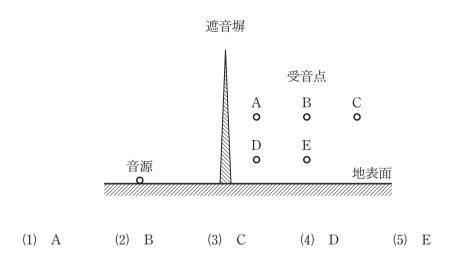
問2 ダクト直径が 300 mm,内張り吸音材の厚みが 25 mm,周波数 400 Hz における吸音率が 0.7,ダクト長が 2 m の吸音ダクトの伝達損失 R は約何 dB か。ただし,音速を 340 m/s,P:ダクトの周長(m),S:ダクトの断面積(m^2),l:ダクト長(m), α :吸音率とし,伝達損失を次式で求めるものとする。

$$R = (\alpha - 0.1) \frac{P}{S} l$$

(1) 13 (2) 16 (3) 19 (4) 22 (5) 24

問3 ダクトから放射される 100 Hz の騒音を減音するために、ダクトの途中に膨張 形消音器を挿入する。次の空洞の長さと膨張比のうち、最大の伝達損失が得られる ものはどれか。ただし、音速は340 m/s とする。

	空洞の長さ(m)	膨張比
(1)	0.425	2
(2)	0.85	2
(3)	0.85	4
(4)	1.70	4
(5)	1.70	8


問4 平らな床面とそれに垂直な壁との交線上の中央に点音源とみなせる音源がある。 音源から距離 4 m の位置で音圧レベルを測定したところ 66 dB であった。この音 源の音響出力は約何 W か。

- (1) 1.0×10^{-4}
- (2) 1.5×10^{-4}
- (3) 2.0×10^{-4}
- (4) 2.5×10^{-4}
- (5) 3.0×10^{-4}

問5 点音源 A 及び点音源 B が自由空間内にあり、各音源のパワーレベルは、A が 100 dB, Bが 104 dB である。音源 A と音源 B から同時に音が出ている場合の, 受音点 C における音圧レベルは約何 dB か。ただし、受音点 C は音源 A から 5 m、 音源 B から 8 m 離れており、相互の音の干渉はないものとする。

- (1) 78
- (2) 81 (3) 84 (4) 87 (5) 90

問6 下図のように、無限に長い遮音塀の垂直断面上に音源と受音点A~Eがあるとき、これらの受音点のうち、塀による減音量が最大となる受音点はどれか。ただし、 塀からの透過音及び地表面での反射音は無視できるとする。

問7 壁面に垂直に入射する1kHzの騒音を、波長に比べて十分薄い厚さの多孔質 材料によって吸音したい。最大の吸音率を得るための、壁面と多孔質材との間の空 気層の厚さは約何 cm か。ただし、音速は340 m/s とする。

- (1) 0 (密着) (2) 4.25 (3) 8.5 (4) 17 (5) 34
- 問8 均質な平板の音響透過損失に関する記述として、誤っているものはどれか。
 - (1) 音響透過損失は、基本的に質量則に従う。
 - (2) コインシデンスが生じると、音響透過損失は質量則よりも低下する。
 - (3) 質量則によると、材料の密度を一定とするとき、板が厚いほど音響透過損失は大きくなる。
 - (4) 経験式によると、音響透過損失は、周波数が2倍になると約5dB増加する。
 - (5) 材料に対する音波の入射条件が音響透過損失に与える影響はない。

問9 工場の建屋壁面外の測定点で騒音を測定したところ、 $500 \, \text{Hz}$ のオクターブバンド音圧レベルは $67.4 \, \text{dB}$ であった。工場建屋壁面(密実な一重壁)の厚さのみを変えて、これを $62.0 \, \text{dB}$ に改善するためには、壁の厚さを約何倍にすべきか。ただし、この壁の音響透過損失 TL は次式で近似できるものとする。ここに M は面密度、f は中心周波数とする。

 $TL = 18 \log(M \cdot f) - 44$

- (1) 1.4 (2) 1.6 (3) 1.8 (4) 2.0 (5) 2.2
- 問10 音圧レベルが共に 80 dB である 100 Hz, 150 Hz, 200 Hz の正弦波成分からなる騒音がある。この騒音のバンド音圧レベルとして, 誤っているものはどれか。なお, 他の周波数成分は無視できるとする。
 - (1) 中心周波数 100 Hz の 1/3 オクターブバンド音圧レベルは、80 dB である。
 - (2) 中心周波数 125 Hz の 1/3 オクターブバンド音圧レベルは、0 dB である。
 - (3) 中心周波数 160 Hz の 1/3 オクターブバンド音圧レベルは、80 dB である。
 - (4) 中心周波数 125 Hz のオクターブバンド音圧レベルは、83 dB である。
 - (5) 中心周波数 250 Hz のオクターブバンド音圧レベルは, 80 dB である。
- 問11 $20 \text{ Hz} \sim 20 \text{ kHz}$ に一様な周波数成分をもつホワイトノイズの音圧レベルが 80 dB であるとき,このホワイトノイズの中心周波数 1 kHz のオクターブバンド 音圧レベルは約何 dB か。
 - (1) 50 (2) 55 (3) 60 (4) 65 (5) 70

問12 サウンドレベルメータ及び騒音測定に関する記述として,正しいものはどれか。

- (1) 等価騒音レベルを直接求めるためには、積分平均サウンドレベルメータを使用できる。
- (2) マイクロホンは、任意の指向特性のものを使用できる。
- (3) 騒音レベルを測定するときは、常に周波数補正回路の C 特性を用いる。
- (4) 指示部の動特性には、常に時間重み特性 S を用いる。
- (5) 騒音計の感度の校正には、常に電気的な校正のみで代用できる。

問13 機械 A のみを駆動したとき,測定地点 C で騒音レベル 70 dB の定常音が測定された。また,機械 B のみを駆動したとき,測定地点 C で 10 秒ごとに騒音レベルの最大値が 75 dB の間欠音が測定された。機械 A 及び B が同時に駆動するとき,測定地点 C で測定される騒音規制法の規定による騒音レベルは約何 dB か。

(1) 70 (2) 72 (3) 74 (4) 76 (5) 78

問14 ある騒音のオクターブ分析をして次表が得られた。この騒音の騒音レベルは約何 dB か。

中心周波数(Hz)	63	125	250	500	1000	2000
バンド音圧レベル(dB)	96	86	63	57	43	40

(1) 68 (2) 73 (3) 80 (4) 88 (5) 96

問15 常温,1 気圧の無響室内に最大寸法が0.6 m の機械を設置し,この機械の音響パワーレベルを測定により求めたい。平均音圧レベル $L_p(dB)$ から各バンドの音響パワーレベル $L_W(dB)$ を求める実用的な式として正しいものはどれか。ただし,平均音圧レベルは,音源の中心から1.5 m の球面上の20 点の位置で測定したオクターブバンド音圧レベルから求めるものとし,測定球面の表面積を $S_1(m^2)$,基準面積を $S_0(m^2)$ とする。

(1)
$$L_W = L_p + 10 \log \frac{S_1}{S_0}$$

(2)
$$L_W = L_p - 10 \log \frac{S_1}{S_0}$$

(3)
$$L_W = L_p + 30 \log \frac{S_1}{S_0}$$

(4)
$$L_W = L_p - 20 \log \frac{S_1}{S_0}$$

(5)
$$L_W = L_p + 20 \log \frac{S_1}{S_0}$$

問16 休憩時間を含めた全作業時間が 6.4 時間,全作業時間帯の等価騒音レベルから 求めた基準化 8 時間平均騒音レベルが 75 dB であるとき,全作業時間帯に測定さ れた等価騒音レベルは約何 dB か。

- (1) 75
- (2) 76
- (3) 77
- (4) 78
- (5) 79

問17 工場振動防止に関する記述として、不適切なものはどれか。

- (1) 振動の防止対策の実施にあたっては、常に振動を感じないレベル以下にする ことが必要である。
- (2) 振動の防止対策の実施にあたっては、費用対効果も含めて効率のよいものを 実施する。
- (3) 振動防止計画を進めるにあたっては、まずはじめに体感を利用する。
- (4) 苦情対応の場合には建屋の振動現象も考慮して実態を把握する。
- (5) 複数の機械の影響により振動の強弱が現れるような場合には、それらを併せ て検討する。

問18 回転体の釣り合いに関する記述として、誤っているものはどれか。

- (1) 毎分 n 回転している円板の角速度は、 $\omega = 2\pi n/60$ である。
- (2) 角速度 ω で回っている回転体の回転軸から半径 η の位置にある不釣り合い 質量を m_1 とすると、回転体に作用する静的不釣り合い力は、 $F = m_1 r_1 \omega^2$ で ある。
- (3) 回転体の回転軸から半径 r_1 の位置にある不釣り合い質量 m_1 と回転体の回 転軸に関して反対側に、釣り合い質量 m_2 を半径 r_2 の位置に、 $m_1r_1=m_2r_2$ となるように付加して、静的釣り合いをとることができる。
- (4) 回転体が円筒の場合には、静的に釣り合いがとれても、回転により不釣り合 いモーメントが生じることがある。
- (5) 回転による不釣り合いモーメントが生じることを、慣性力不釣り合いという。

問19 弾性支持による機械の防振対策では減衰要素(ダンパ)を付加しないと、弾性支 持系の固有振動数が加振力の振動数とほぼ等しいときに、振動伝達率は非常に大き くなる。減衰比が 0.25 の減衰要素を付加すると、振動伝達率は約いくらになるか。

- $(1) \quad 1.1 \qquad (2) \quad 1.7 \qquad (3) \quad 2.2$
- (4) 4.1 (5) 5.0

問20 工場のある機械が発生している振動数 31.5 Hz の振動を機械近傍の地盤上で 測定したところ,その振動加速度レベルは 78 dB であった。この機械を減衰要素 のないばねで固有振動数が 10.5 Hz となるように弾性支持すると,振動数 31.5 Hz の振動加速度レベルは約何 dB となるか。

(1) 55 (2) 60 (3) 65 (4) 70 (5) 75

問21 弾性支持に関する記述として、誤っているものはどれか。

- (1) 機械基礎の目標振動値を定め、主加振振動数に対して振動伝達率を決める。
- (2) 振動伝達率から弾性支持系の固有振動数は、一般的に主加振振動数の 1/3 以下に設定する。
- (3) 配線,配管等周辺との連結は設計変位振幅を考慮して検討する。
- (4) 設計固有振動数と変位振幅及び設置環境から、ばね材料と種類を選定する。
- (5) 設計固有振動数が 4 Hz 以上の場合, 空気ばねを選定する。

問22 かたい層の上のやわらかい粘土層に機械を設置する場合には、波動が粘土層の部分で多重反射して共振現象を起こすことがある。粘土層での横波の速度が200 m/sの時に5 Hz で共振現象を起こしたとすると、粘土層の厚さは約何 m か。

(1) 5 (2) 10 (3) 15 (4) 20 (5) 25

問23 ばね特性に関する記述として、誤っているものはどれか。

- (1) 荷重-たわみ曲線図において荷重の加荷,減荷で異なる経路を通るループは ヒステリシスループと呼ばれる。
- (2) ヒステリシスループの面積はエネルギーの消失量に等しい。
- (3) 弾性支持の防振設計には静的ばね定数を用いる。
- (4) 動的ばね定数は振幅の大小により変化する。
- (5) ヒステリシスを有するばねを用いる場合には、一般的に減衰要素を必要としない簡素な構造の防振装置を得ることができる。

問24 単位周波数帯域に含まれる成分の強さが周波数に無関係に一定の雑音(ホワイトノイズ)をオクターブ分析したとき、オクターブあたりの勾配(dB/オクターブ)で、正しいものはどれか。

 $(1) -6 \qquad (2) -3 \qquad (3) 0 \qquad (4) +3 \qquad (5) +6$

問25 圧電形振動ピックアップに関する記述として、誤っているものはどれか。

- (1) 圧電形振動ピックアップは、サイズモ系の振動ピックアップである。
- (2) 圧電形振動ピックアップには、圧縮形と剪断形の二つの構造がある。
- (3) 圧電形振動ピックアップは、加速度形のピックアップである。
- (4) 圧電形振動ピックアップの測定上限振動数は,固有振動数の3倍程度までである。
- (5) 圧電形振動ピックアップは、被測定物に接触させて振動を測定する。

問26 圧電形振動ピックアップを 10 度傾斜した地表面に垂直に、かつ堅固に設置して測定した振動レベルの補正値(dB)として、最も近いものはどれか。ただし、 $\sin 10^\circ = 0.174$ 、 $\cos 10^\circ = 0.985$ とする。

- (1) 0 (2) 2 (3) 4 (4) 6 (5) 8
- 問27 振動規制法又は JIS 規格に準じて、振動源とその振動源より発生する地盤振動を振動レベル計で測定する時、その振動レベルの測定方法として、誤っているものはどれか。
 - (1) 工場に設置されている圧縮機一台から発生する変動の少ない振動の場合は, その平均的な指示値を読み取る。
 - (2) 道路交通による振動の場合は、大型車通過時の最大値を20台分読み取り、その平均値を求める。
 - (3) 新幹線鉄道による振動は、上り下りに関係なく連続して通過する 20 本の列車について最大値を測定して、その上位 10 本の平均値で表示する。
 - (4) 負荷,無負荷の差の大きい圧縮機や機械プレスなどの複数の機械が同時に稼働していて,指示が不規則かつ大幅に変動している場合は,80%レンジの上端値を求める。
 - (5) 建設現場で、杭打機が単独で稼働している場合には、変動ごとの最大値を十分な個数読み取り、その平均値で表示する。

問28 ある機械が発生している振動の振動加速度を機械から 10 m 離れている地点で測定して,その 1/3 オクターブバンド周波数分析を行って下表に示す結果を得た。波動は表面波,地盤の内部減衰係数を 8 Hz で 0.1/8.7,16 Hz で 0.2/8.7 とすると,機械から 20 m 離れた地点の 1/3 オクターブバンドの振動加速度レベル (dB) の組合せとして,正しいものはどれか。

1/3 オクターブバンド中心周波数(Hz)	8	16
1/3 オクターブバンド振動加速度レベル(dB)	55	61

	8 Hz	16 Hz
(1)	43	53
(2)	49	55
(3)	51	56
(4)	52	58
(5)	54	59

問29 振動レベル計 (JIS C 1510) に用いられている用語の定義として、誤っているものはどれか。

- (1) 振動加速度レベルとは、振動加速度の実効値を基準の振動加速度で除した値 の常用対数の 20 倍である。
- (2) 受感軸とは、振動ピックアップが最大の感度を持つ方向である。
- (3) 器差とは、鉛直特性のレスポンスと鉛直特性のそれぞれの周波数に対応する 基準レスポンスとの差である。
- (4) 時定数とは、指数平均特性を持つ回路の時定数である。
- (5) 波高率とは、信号の平均値と実効値との比である。

- 問30 振動レベル計(JIS C 1510)とそれを用いた測定に関する記述として,不適切なものはどれか。
 - (1) 校正装置を持つ場合,使用前に校正回路による校正を行う。
 - (2) 振動感覚補正特性には、鉛直特性と水平特性の2種類ある。
 - (3) 衝撃性の振動の測定の場合,過負荷状態(過大入力)でないことを確認する。
 - (4) 測定レンジは、一般に振動レベル計の指示が振り切れない範囲で、可能な限り高い感度のレンジを使用することが望ましい。
 - (5) 周波数補正をしない平坦特性は、備える必要はない。

対数表は18~20ページにあります。

対数表の見方

常用対数表の網掛けの数値は次のことを表しています。すなわち「真数」n=2.03の場合, $\log n = \log 2.03 = 0.307$, 又は $10^{0.307} = 2.03$ である。

↓ nの小数第1位		\rightarrow $n \in$)小数第 2 /	位の数値	
までの数値	0	1	2	3	4
1.0	000	004	009	013	017
1.1	041	045	049	053	057
2.0	301	303	305	307	310
2.1	322	324	326	328	330

指数と対数の関係

 $a^c = b$ の指数表現は、対数表現をすると $\log_a b = c$ となる。(騒音・振動分野では ほとんどの場合、常用対数であるから底 a の 10 は、多くの場合省略される。)

代表的公式

(1)
$$\log(x \times y) = \log x + \log y$$
 (2) $\log(x/y) = \log x - \log y$

(2)
$$\log(x/v) = \log x - \log v$$

公式の使用例

(1) 真数 n = 200 の場合(①と③使用)

$$\log 200 = \log (2 \times 100) = \log 2 + \log 100 = \log 2 + \log 10^2 = \log 2 + 2 \log 10 = 0.301 + 2 = 2.301$$

(2) 真数 n = 0.02 の場合(②と③使用)

$$\log 0.02 = \log \left(\frac{2}{100}\right) = \log 2 - \log 100 = \log 2 - \log 10^2 = \log 2 - 2\log 10 = 0.301 - 2 = -1.699$$

常用対数表(表中の値は小数を表す)

.,,,,,,,										
	0	1	2	3	4	5	6	7	8	9
1.0	000	004	009	013	017	021	025	029	033	037
1.1	041	045	049	053	057	061	064	068	072	076
1.2	079	083	086	090	093	097	100	104	107	111
1.3	114	117	121	124	127	130	134	137	140	143
1.4	146	149	152	155	158	161	164	167	170	173
1.5	176	179	182	185	188	190	193	196	199	201
1.6	204	207	210	212	215	217	220	223	225	228
1.7	230	233	236	238	241	243	246	248	250	253
1.8	255	258	260	262	265	267	270	272	274	276
1.9	279	281	283	286	288	290	292	294	297	299
2.0	301	303	305	307	310	312	314	316	318	320
2.1	322	324	326	328	330	332	334	336	338	340
2.2	342	344	346	348	350	352	354	356	358	360
2.3	362	364	365	367	369	371	373	375	377	378
2.4	380	382	384	386	387	389	391	393	394	396
2.5	398	400	401	403	405	407	408	410	412	413
2.6	415	417	418	420	422	423	425	427	428	430
2.7	431	433	435	436	438	439	441	442	444	446
2.8	447	449	450	452	453	455	456	458	459	461
2.9	462	464	465	467	468	470	471	473	474	476
3.0	477	479	480	481	483	484	486	487	489	490
3.1	491	493	494	496	497	498	500	501	502	504
3.2	505	507	508	509	511	512	513	515	516	517
3.3	519	520	521	522	524	525	526	528	529	530
3.4	531	533	534	535	537	538	539	540	542	543
3.5	544	545	547	548	549	550	551	553	554	555
3.6	556	558	559	560	561	562	563	565	566	567
3.7	568	569	571	572	573	574	575	576	577	579
3.8	580	581	582	583	584	585	587	588	589	590
3.9	591	592	593	594	595	597	598	599	600	601
4.0	602	603	604	605	606	607	609	610	611	612
4.1	613	614	615	616	617	618	619	620	621	622
4.2	623	624	625	626	627	628	629	630	631	632
4.3	633	634	635	636	637	638	639	640	641	642
4.4	643	644	645	646	647	648	649	650	651	652
4.5	653	654	655	656	657	658	659	660	661	662
4.6	663	664	665	666	667	667	668	669	670	671
4.7	672	673	674	675	676	677	678	679	679	680
4.8	681	682	683	684	685	686	687	688	688	689
4.9	690	691	692	693	694	695	695	696	697	698
5.0	699	700	701	702	702	703	704	705	706	707
5.1	708	708	709	710	711	712	713	713	714	715
5.2	716	717	718	719	719	720	721	722	723	723
5.3	724	725	726	727	728	728	729	730	731	732
5.4	732	733	734	735	736	736	737	738	739	740
U. I	.04	.00	.01	.00		.00	.01		.00	. 10

	0	1	2	3	4	5	6	7	8	9
5.5	740	741	742	743	744	744	745	746	747	747
5.6	748	749	750	751	751	752	753	754	754	755
5.7	756	757	757	758	759	760	760	761	762	763
5.8	763	764	765	766	766	767	768	769	769	770
5.9	771	772	772	773	774	775	775	776	777	777
6.0	778	779	780	780	781	782	782	783	784	785
6.1	785	786	787	787	788	789	790	790	791	792
6.2	792	793	794	794	795	796	797	797	798	799
6.3	799	800	801	801	802	803	803	804	805	806
6.4	806	807	808	808	809	810	810	811	812	812
6.5	813	814	814	815	816	816	817	818	818	819
6.6	820	820	821	822	822	823	823	824	825	825
6.7	826	827	827	828	829	829	830	831	831	832
6.8	833	833	834	834	835	836	836	837	838	838
6.9	839	839	840	841	841	842	843	843	844	844
7.0	845	846	846	847	848	848	849	849	850	851
7.1	851	852	852	853	854	854	855	856	856	857
7.2	857	858	859	859	860	860	861	862	862	863
7.3	863	864	865	865	866	866	867	867	868	869
7.4	869	870	870	871	872	872	873	873	874	874
7.5	875	876	876	877	877	878	879	879	880	880
7.6	881	881	882	883	883	884	884	885	885	886
7.7	886	887	888	888	889	889	890	890	891	892
7.8	892	893	893	894	894	895	895	896	897	897
7.9	898	898	899	899	900	900	901	901	902	903
8.0	903	904	904	905	905	906	906	907	907	908
8.1	908	909	910	910	911	911	912	912	913	913
8.2	914	914	915	915	916	916	917	918	918	919
8.3	919	920	920	921	921	922	922	923	923	924
8.4	924	925	925	926	926	927	927	928	928	929
8.5	929	930	930	931	931	932	932	933	933	934
8.6	934	935	936	936	937	937	938	938	939	939
8.7	940	940	941	941	942	942	943	943	943	944
8.8	944	945	945	946	946	947	947	948	948	949
8.9	949	950	950	951	951	952	952	953	953	954
9.0	954	955	955	956	956	957	957	958	958	959
9.1	959	960	960	960	961	961	962	962	963	963
9.2	964	964	965	965	966	966	967	967	968	968
9.3	968	969	969	970	970	971	971	972	972	973
9.4	973	974	974	975	975	975	976	976	977	977
9.5	978	978	979	979	980	980	980	981	981	982
9.6	982	983	983	984	984	985	985	985	986	986
9.7	987	987	988	988	989	989	989	990	990	991
9.8	991	992	992	993	993	993	994	994	995	995
9.9	996	996	997	997	997	998	998	999	999	1.000

